NASA Weather Accident Prevention Project Review (May 2000) Survey Summary

Strengths in NASA's Weather Accident Prevention Project

- 1. Strong industry, government and academia partnerships
- 2. Industry is geared to market NASA developed products
- 3. Solid end-to-end technology development

Weaknesses in NASA's Weather Accident Prevention Project

- 1. Better links needed to FAA requirements/implementation processes and offices
- 2. Independent assessment of technology needed to ensure market interests do not overshadow safety and certification concerns.
- 3. Human factors and certification issues were not clearly addressed in many of the products presented at the review.
- 4. Continued FAA collaboration needed to shorten certification cycle.
- 5. Higher degree of systems integration needed for products being developed
- 6. Product training is absent in project.
- 7. Insufficient communications with DoD programs and experiences

Technology gaps in NASA product suite not covered by other NASA and non-NASA programs

- 1. Integration of air traffic in weather displays
- 2. Development of multi-hazard (turbulence, icing etc) forward looking sensors
- 3. Integration with ground based equipment and users
- 4. Human factors design in weather display and interpretation

Greatest hurdle in developing the NASA funded products as presented at the review

1. Transport AWIN System

- a. Weather product improvements
- b. Hardware certification and operational approval
- c. Pilot workload
- d. Retrofit cost in older aircraft
- e. Communication link to handle weather data load

2. GA AWIN System

- a. Affordability
- b. Hardware certification and operational approval
- c. Communication link to handle weather data load

3. E-PIREP/AUTOMET System

a. Establishing user incentives

- b. Examining broader (non-aviation) concepts
- c. Maintenance of sensor equipment
- d. Hardware certification and operational approval

4. Enhanced Turbulence Radar

- a. Limited testing opportunities
- b. Getting long enough warning time to make effective action
- c. Hardware certification and operational approval

5. Turbulence LIDAR Detector

- a. Limited testing opportunities
- b. Getting long enough warning time to make effective action
- c. Affordability
- d. Effectiveness at cruising altitudes
- e. Hardware certification and operational approval

6. Enhanced Weather Products

- a. Format and content of weather products
- b. Keeping focused on decision-aides versus a proliferation of color graphics
- c. Sufficient resolution on small display
- d. Data input to feed models

7. Turbulence Mitigation and Control

a. Collaboration with DoD especially Air Force

8. Turbulence In-Situ

a. Examining broader (non-aviation) concepts

To what extent should terminal weather information be part of any envisioned AWIN System

- a. Should include GA to Transport categories with higher weight towards GA
- b. AWIN Concepts and development should be tied to existing FAA ITWS and Collaborative Decision programs
- c. ATC and Aircraft will have to look at similar weather data
- d. To the extent that real time data can be provided

How valuable was the NASA WxAP Project Review

Rating Average: 4.3 (1= no value, 2=little, 3=moderate, 4=highly, 5=extremely valuable)

Recommendations for 2001 NASA WXAP Review

- a. Present FAA links to product implementation
- b. Emphasis FAA coordination
- c. Invite more aircraft operators
- d. Emphasis NOAA coordination

- e. Limit presentation to 30 minutes max each
- f. Provide free AvSP shirts/sweatshirts
- g. Emphasize NASA Aircraft Icing Program
- h. Emphasize Human Factors element in Project

Areas for increased FAA-NASA Integration

- a. Define requirements/operational process for product implementation
- b. Cockpit integration
- c. CNS/ATM integration